# Applications of machine learning in speech and audio processing

Amir R. Moghimi

July 2020

# My background



# Topics for today

Automatic Speech Recognition (ASR)
What someone is saying (audio → text)

Voice Activity Detection (VAD)
Whether someone is speaking

Speech Enhancement

Making speech sound better

# But first, a look at speech

# Audio signals

Sound: longitudinal waves propagating through a medium (e.g., air)

Audio signal: vibrations as received at a microphone or eardrum

Human hearing: 20 Hz to 20 KHz. Typically sampled at

• 48 KHz "full-band audio"

• 44.1 KHz "CD quality"

• 16 KHz "wideband speech"

• 8 KHz "narrowband speech" or "telephone quality"

•

### Human hearing

20 Hz to 20 KHz is very generous



Equal-loudness contours (red) (from ISO 226:2003 revision)
Original ISO standard shown (blue) for 40-phons

# Speech: from language to sound

Language Words consist of **Phonemes** realized as **Phones** 

Sounds

Glass will clink when struck by metal. struck [stank] This [ \Lambda ] -0.5 1.52 1.53

Time (seconds)

# Anatomy of speech production



- 2. Hard palate
- 3. Alveolar ridge
- 4. Soft palate (velum)
- 5. Tongue tip
- 6. Dorsum
- 7. Uvula
- 8. Radix
- Pharynx
- Epiglottis
- 11. False vocal cords
- 12. Vocal cord (vocal fold)
- Larynx
- 14. Esophagus
- 15. Trachea

# Vocal cords for voiced speech





http://www.feilding.net/sfuad/musi3012-01/images/lectures/vocal\_fold\_cycles.gif

# Source-filter model of speech production



# Cooking up a phone



Vandyke, D. J. (2014). Glottal Waveforms for Speaker Inference & A Regression Score Post-Processing Method Applicable to General Classification Problems (Doctoral dissertation, University of Canberra). 11

# Anatomy and acoustics



# Spectral and temporal behavior



# And now, some numbers

Spectral range: 50 Hz – 12 KHz

Pitch (fundamental frequency):

Male: 50 - 250 Hz

Female: 120 – 500 Hz

Vowel durations: 40 - 400 ms (English)

Phone rate: 9.4 - 13.8 phone/s (English) (*roughly*)

# Speech processing problems

# Automatic Speech Recognition (ASR)



# ASR: Reverse-engineering biology & physics



# Why is speech recognition hard?

### Speech variances

Environmental, natural, systemic

### Continuous speech and audio

e.g., "I scream" vs. "ice cream"

### Vocabulary sizes

English language: 100,000+ words to 1,000,000+ words

Native English speaker (active): 20,000 words

95% of common text: 3000 words

### Many other factors

# Measuring ASR performance

**Ground truth:** it is great seeing you all here today

**Hypothesis:** let's great see you all here two day

word error rate (WER) = 
$$\frac{\text{substitutions} + \text{deletions} + \text{insertions}}{\text{words in correct text}}$$

# Measuring ASR performance

**Ground truth:** it is great seeing you all here today

**Hypothesis:** let's great see you all here two day

word error rate (WER) = 
$$\frac{\text{substitutions} + \text{deletions} + \text{insertions}}{\text{words in correct text}}$$
$$= \frac{3 + 1 + 1}{8} = 50\%$$

a.k.a. (relative) Levenshtein distance

# ASR as a pattern matching problem



### Feature extraction

### Speech information: spectral and temporal



$$\mathbf{o}(t) = \begin{bmatrix} o_1(t) \\ \vdots \\ o_N(t) \end{bmatrix} = \begin{bmatrix} X(t, f_0) \\ \vdots \\ X(t, f_{N-1}) \end{bmatrix}$$

# Commonly used speech features

Energy and pitch
Log power spectra
Linear Predictive Coding (LPC) coefficients
Mel-frequency Cepstral Coefficients (MFCC)
Perceptual Linear Prediction (PLP) coefficients
Power-normalized Cepstral Coefficients (PNCC)

• • •

# Very early ASR

Template matching

Compare new recording to pre-recorded samples

Dynamic Time Warping (DTW)
Allows for timing fluidity

# Dynamic Time Warping (DTW)



### ASR as MAP detection



$$\widehat{\boldsymbol{W}} = \underset{\boldsymbol{W}}{\operatorname{argmax}} \Pr{\{\boldsymbol{W} | \boldsymbol{O}\}}$$

### The models of ASR

$$\widehat{\boldsymbol{W}} = \underset{\boldsymbol{W}}{\operatorname{argmax}} \Pr{\boldsymbol{W}|\boldsymbol{O}}$$

$$= \underset{\boldsymbol{W}}{\operatorname{argmax}} \frac{\Pr{\boldsymbol{O}|\boldsymbol{W}}\Pr{\boldsymbol{W}}}{\Pr{\boldsymbol{O}}}$$

$$= \underset{\boldsymbol{W}}{\operatorname{argmax}} \Pr{\boldsymbol{O}|\boldsymbol{W}}\Pr{\boldsymbol{W}}$$

$$\mathbf{O} = [\mathbf{o}[0] \ \mathbf{o}[1] \ ...]$$
  
 $\mathbf{W} = [w_1 \ w_2 \ ...]$ 

$$= \underset{W}{\operatorname{argmax}} \Pr\{\boldsymbol{O}|\boldsymbol{W}\} \Pr\{\boldsymbol{W}\} = \underset{W}{\operatorname{argmax}} \Pr\{\boldsymbol{O}|\boldsymbol{P}\} \Pr\{\boldsymbol{P}|\boldsymbol{W}\} \Pr\{\boldsymbol{W}\}$$

Acoustic Model (AM)

Dictionary (a.k.a. Lexicon)

Language Model (LM)

# ASR as a machine learning problem



# Hidden Markov Model (HMM)



# Gaussian mixture model (GMM)

Family of probability distributions (parameterized)

$$f_{\mathbf{o}|s}(\mathbf{o}) = \sum_{k=1}^{K} \alpha_k g(\mathbf{o}; \mathbf{\mu}_k, C_k)$$

$$g(\mathbf{o}; \mathbf{\mu}, C) = \frac{1}{\sqrt{(2\pi)^D |C|}} e^{-\frac{1}{2}}$$



# Deep learning comes to ASR

### Deep neural network



### The new acoustic model: HMM-DNN

HMM output distributions:



DNN

Typical DNNs for speech have millions of parameters per state

→ huge training data (thousands of hours)



Dahl, George E., et al. "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition." *Audio, Speech, and Language Processing, IEEE Transactions on* 20.1 (2012): 30-42.

# Detour: Recurrent Neural Networks (RNNs)

# Feed-forward (densely connected) neural network



## Common activation functions

### **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



### Leaky ReLU

 $\max(0.1x, x)$ 



### tanh

tanh(x)



### **Maxout**

 $\max(w_1^T x + b_1, w_2^T x + b_2)$ 

### ReLU

 $\max(0,x)$ 



$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

# Dense DNNs can get big fast



total: 46 trainable parameters

More parameters means more ...

- memory & computational resources
- "capacity" for learning
- data required for training

### Recurrence: weight-sharing across time

Recurrent layer has an output and a "state" that is fed back into the next copy as input:



The "state" gathers information across time  $\rightarrow$  arbitrary length sequences (on paper)

### Sequence modeling with RNNs: variations

Many-to-many (sequence-to-sequence) RNN

Many-to-one (encoding) RNN

One-to-many (generating) RNN

Bidirectional RNN (e.g., BLSTM)



## And now, back to our show

### ASR with RNNs



Microsoft, circa 2010



### The impact of deep learning on speech

Model variations in large, diverse datasets

Pronunciation

Speaker

Environment

#### Learn feature extraction



January 2016 41

### The impact of deep learning on speech

The demise of HMMs

Model temporal dynamics with RNNs

Merging acoustic and language models

Grapheme-based ASR
No acoustics/phonetics knowledge at all!

January 2016 42

## Voice Activity Detection (VAD)

At what times in an audio recording or stream is there someone speaking?

#### Used in:

```
Speech coding
Speech recognition
Speech communication (e.g., telephony)
```



### Evaluating a VAD

#### Signal-level metrics:

FEC (Front End Clipping): clipping introduced in passing from noise to speech MSC (Mid Speech Clipping): clipping due to speech misclassified as noise OVER: noise interpreted as speech in passing from speech activity to noise NDS (Noise Detected as Speech): noise interpreted as speech

#### Application-based metrics:

```
Speech quality (intelligibility, MOS, ...)
ASR performance (word error rate, ...)
...
```

### VAD system components



### Conventional VAD systems

Energy thresholding

Pitch detection & tracking

Phase-lock loops, etc.

Frame-by-frame classification of:

**Auto-correlation function** 

Power Spectral Density (PSD)

Other features

Combinations of the above

• • •

### Simple VAD with an RNN (LSTM)



```
from keras.layers import Input, Dense, concatenate
from keras.models import Model

# Create an input. This time, the input has a leading dimension of
# unspecific length to allow for arbitrary length sequences:
inputs = Input(shape=(None, 160))

# Define the LSTM cell:
hidden = LSTM(32, return_sequences=True)(inputs)

# Apply a Dense layer to the ouput to map it down to a single
# VAD probability per frame:
outputs = Dense(1, activation='sigmoid')(hidden)

# Define and compile the model
model = Model(inputs=inputs, outputs=outputs)
model.compile(...)
```

### Speech enhancement

Speech quality can be degraded by

Additive noise

Reverberation

Filtering

Distortion

Spectral processing

Audio coding

Network effects (e.g., packet loss)

Problem: Reconstruct original, "clean" speech from degraded speech

### Speech quality evaluation

#### Intelligibility

Human tests → measure WER
Objective (calculable) metrics (e.g., STI or STOI)

#### Perceptual quality

Subjective listening tests → measure MOS, MUSHRA, etc. Objective (calculable) metrics (e.g., PESQ)

## Directional microphones



# Microphone array beamforming

E.g., endfire arrays



Wide variety of adaptive beamforming and dynamic Wiener filtering (DWF) techniques



### De-noising with signal processing

Amplitude Noisy speech Noise FFT estimation Spectral subtraction Phase Power Power spectrum spectrum Enhanced speech Nonnegative matrix factorization Square IFFT root

Adaptive noise reduction

Time-frequency masking



### Speech enhancement with neural networks

#### Adaptive filtering/beamforming

Network estimates spectral or other characteristics of signal

#### Time-frequency mask (or gain) estimation

Network estimates gain to apply per time-frequency cell

#### Auto-encoder

Network models degraded-to-clean transformation

### A real example: RNNoise

Real-time (causal) speech enhancement / denoising

#### Inputs:

Frames of audio, 42 features per frame 22 band energy values 20 other features

#### **Outputs:**

Ideal (Wiener) gains for each of the 22 bands per frame

VAD estimate for the frame (auxiliary, just helps training)



#### Where we are now

Machine learning (especially deep learning) has completely overrun speech processing research

#### Promises of deep learning:

Solves unsolvable problems

Finds unintuitive solutions

Removes the need for detailed expertise and handcrafting

#### Pitfalls of deep learning:

Behavior difficult to explain/predict

Too easy to apply (and misapply)

Blind spots / false confidence / catastrophic failures

## Thank you!