
Applications of machine 
learning in speech and audio 
processing

Amir R. Moghimi

July 2020



My background

Jan 2007 Jun 2014 May 2018

Nov 2019

Sep 2002

2
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Topics for today

Automatic Speech Recognition (ASR)
What someone is saying (audio → text)

Voice Activity Detection (VAD)
Whether someone is speaking

Speech Enhancement
Making speech sound better
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But first, a look at speech
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Audio signals

Sound: longitudinal waves propagating through a medium (e.g., air)

Audio signal: vibrations as received at a microphone or eardrum

Human hearing:  20 Hz to 20 KHz.  Typically sampled at
• 48 KHz “full-band audio”

• 44.1 KHz “CD quality”

• 16 KHz “wideband speech”

• 8 KHz “narrowband speech” or “telephone quality”

• …
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Human hearing
20 Hz to 20 KHz is very generous

https://en.wikipedia.org/wiki/Equal-loudness_contour 6

https://en.wikipedia.org/wiki/Equal-loudness_contour


Speech: from language to sound
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Language

Sounds

Words

Phonemes

Phones

consists of

consist of

realized as

manifest as

Glass will clink when struck by metal.

struck

[ s t ɹ ʌ k ]

This [ ʌ ]



Anatomy of speech production

8http://test.virtual-labs.ac.in/labs/ece01/exp3/theory/

http://test.virtual-labs.ac.in/labs/ece01/exp3/theory/


Vocal cords for voiced speech

9http://www.phy.duke.edu/~dtl/136126/restrict/Voice/foldwave.gif

http://www.feilding.net/sfuad/musi3012-01/images/lectures/vocal_fold_cycles.gif

http://www.phy.duke.edu/~dtl/136126/restrict/Voice/foldwave.gif
http://www.feilding.net/sfuad/musi3012-01/images/lectures/vocal_fold_cycles.gif


Source-filter model of speech production
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Pulse train

Random 
noise



Cooking up a phone
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Vandyke, D. J. (2014). Glottal Waveforms for Speaker Inference & A Regression Score Post-Processing 

Method Applicable to General Classification Problems (Doctoral dissertation, University of Canberra).



Anatomy and acoustics

January 2016 12http://www.haskins.yale.edu/featured/heads/mmsp/intro.html

http://www.haskins.yale.edu/featured/heads/mmsp/intro.html


/ɒ/ /i/ /u/ /m/

Spectral and temporal behavior
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g  l    æ   s   wəl k  l     ɪ   n k       wɛn s t ɹ ʌ k  b  aɪ m ɛ ɾ ə l



And now, some numbers

Spectral range: 50 Hz – 12 KHz

Pitch (fundamental frequency):
Male: 50 – 250 Hz

Female: 120 – 500 Hz

Vowel durations: 40 – 400 ms (English)

Phone rate: 9.4 – 13.8 phone/s (English) (roughly)
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Speech processing problems
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Automatic Speech Recognition (ASR)
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Glass will clink 
when struck 
by metal.

Speech Recognizer



ASR: Reverse-engineering biology & physics
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𝑤1 , 𝑤2 , 𝑤3

𝑤1 𝑤2 𝑤3

Speech 
waveform

Internal 
representation



Why is speech recognition hard?

Speech variances
Environmental, natural, systemic

Continuous speech and audio
e.g., “I scream” vs. “ice cream”

Vocabulary sizes
English language: 100,000+ words to 1,000,000+ words

Native English speaker (active): 20,000 words

95% of common text: 3000 words

Many other factors
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Measuring ASR performance

Ground truth: it is great seeing you all here today

Hypothesis: let’s great see you all here two day
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word error rate WER =
substitutions + deletions + insertions

words in correct text



Measuring ASR performance

Ground truth: it is great seeing you all here today

Hypothesis: let’s great see you all here two day

a.k.a. (relative) Levenshtein distance
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word error rate WER =
substitutions + deletions + insertions

words in correct text

=
3 + 1 + 1

8
= 50%



ASR as a pattern matching problem
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Speech Recognition 𝑤1, 𝑤2, 𝑤3, 𝑤4, …
Feature 

Extraction
Decoding

𝑥 𝑡 𝐨 𝑡

signal features
(observations)

word 
sequence



Feature extraction

Speech information: spectral and temporal
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𝐨 𝑡 =
𝑜1 𝑡
⋮

𝑜𝑁 𝑡
=

𝑋 𝑡, 𝑓0
⋮

𝑋 𝑡, 𝑓𝑁−1



Commonly used speech features

Energy and pitch

Log power spectra

Linear Predictive Coding (LPC) coefficients

Mel-frequency Cepstral Coefficients (MFCC)

Perceptual Linear Prediction (PLP) coefficients

Power-normalized Cepstral Coefficients (PNCC)

…
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Very early ASR

Template matching
Compare new recording to pre-recorded samples

Dynamic Time Warping (DTW)
Allows for timing fluidity
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Dynamic Time Warping (DTW)
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https://www.researchgate.net/figure/Dynamic-time-warping_fig1_333096597


ASR as MAP detection
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𝑤1, 𝑤2, 𝑤3, …
Feature 

Extraction
Decoding

𝐨 𝑛

𝑶 = 𝐨 0 𝐨 1 … 𝑾 = 𝑤1 𝑤2 …

෢𝑾 = argmax
𝑾

Pr 𝑾|𝑶



The models of ASR
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= argmax
𝑾

Pr 𝑶|𝑾 Pr 𝑾 = argmax
𝑾

Pr 𝑶|𝑷 Pr 𝑷|𝑾 Pr 𝑾= argmax
𝑾

Pr 𝑶|𝑷 Pr 𝑷|𝑾 Pr 𝑾

Acoustic 
Model (AM)

Dictionary 
(a.k.a. Lexicon)

Language 
Model (LM)

෢𝑾 = argmax
𝑾

Pr 𝑾|𝑶

= argmax
𝑾

Pr 𝑶|𝑾 Pr 𝑾

Pr 𝑶

𝑶 = 𝐨 0 𝐨 1 …

𝑾 = 𝑤1 𝑤2 …



ASR as a machine learning problem
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𝑤1, 𝑤2, 𝑤3, 𝑤4, …
Feature 

Extraction
Model-based 

Decoding
𝑥 𝑡 𝐨 𝑡

Feature 
Extraction

Model 
Training

model 
parameters



Hidden Markov Model (HMM)
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Gaussian mixture model (GMM)

Family of probability distributions (parameterized)
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𝑔 𝐨; 𝛍, 𝐶 =
1

2𝜋 𝐷 𝐶
𝑒−

1
2 𝐨−𝛍 𝑇𝐶−1 𝐨−𝛍

𝑓𝐨|𝑠 𝐨 = ෍

𝑘=1

𝐾

𝛼𝑘𝑔 𝐨; 𝛍𝑘 , 𝐶𝑘 , ෍

𝑘=1

𝐾

𝛼𝑘 = 1



Deep learning comes to ASR
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The new acoustic model: HMM-DNN
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HMM output distributions:

GMM

Typical DNNs for speech have 
millions of parameters per 
state

→ huge training data

(thousands of hours)

DNN



Detour:
Recurrent Neural Networks 
(RNNs)
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Feed-forward (densely connected) neural network

𝑁 feature dimensions 
𝑀 label dimensions

𝐡 = 𝑓 𝑾𝐱 + 𝐛

trainable parameters:
𝑾 : weight matrix
𝐛 : bias vector

activation function:
𝑓 ⋅



Common activation functions



Dense DNNs can get big fast

3 × 4 + 4 = 16 params

4 × 4 + 4 = 20 params

4 × 2 + 2 = 10 params

total: 46 trainable parameters

More parameters means more …
• memory & computational resources
• “capacity” for learning
• data required for training



Recurrence: weight-sharing across time

Recurrent layer has an output and a “state” that is fed back into the next 
copy as input:

The “state” gathers information across time → arbitrary length sequences 
(on paper)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

shown as

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Many-to-many (sequence-to-sequence) RNN

Many-to-one (encoding) RNN

One-to-many (generating) RNN

Bidirectional RNN (e.g., BLSTM)

Sequence modeling with RNNs: variations



And now, back to our show
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ASR with RNNs
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Microsoft, circa 2010

Google, circa 2016



The impact of deep learning on speech

Model variations in large, diverse datasets
Pronunciation

Speaker

Environment

Learn feature extraction

January 2016 41

Pre-
emph

STFT Energy
Mel 

filtering
Log DCT

Δ &
ΔΔ

Signal MFCC



The impact of deep learning on speech

The demise of HMMs
Model temporal dynamics with RNNs

Merging acoustic and language models

Grapheme-based ASR
No acoustics/phonetics knowledge at all! 

January 2016 42



Voice Activity 
Detection (VAD)
At what times in an audio recording or 
stream is there someone speaking?

Used in:

Speech coding

Speech recognition

Speech communication (e.g., telephony)

…
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http://practicalcryptography.com/miscellaneous/machine-learning/voice-activity-detection-vad-tutorial/


Evaluating a VAD

Signal-level metrics:
FEC (Front End Clipping): clipping introduced in passing from noise to speech

MSC (Mid Speech Clipping): clipping due to speech misclassified as noise

OVER: noise interpreted as speech in passing from speech activity to noise

NDS (Noise Detected as Speech): noise interpreted as speech

Application-based metrics:
Speech quality (intelligibility, MOS, …)

ASR performance (word error rate, …)

…
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VAD system components
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https://www.vocal.com/dereverberation/voice-activity-detection/


Conventional VAD systems

Energy thresholding

Pitch detection & tracking
Phase-lock loops, etc.

Frame-by-frame classification of:
Auto-correlation function

Power Spectral Density (PSD)

Other features

Combinations of the above

…
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Simple VAD with an RNN (LSTM)

32x1 dense layer

32-node LSTM cell

1 output
(VAD probability)

160-point power 
spectrogram frame



Speech enhancement

Speech quality can be degraded by
Additive noise

Reverberation

Filtering

Distortion

Spectral processing

Audio coding

Network effects (e.g., packet loss)

Problem: Reconstruct original, “clean” speech from degraded speech



Speech quality evaluation

Intelligibility
Human tests →measure WER

Objective (calculable) metrics (e.g., STI or STOI)

Perceptual quality
Subjective listening tests →measure MOS, MUSHRA, etc.

Objective (calculable) metrics (e.g., PESQ)
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https://en.wikipedia.org/wiki/Speech_transmission_index
http://cas.et.tudelft.nl/pubs/Taal2010.pdf
https://en.wikipedia.org/wiki/Mean_opinion_score
https://en.wikipedia.org/wiki/MUSHRA
https://en.wikipedia.org/wiki/Perceptual_Evaluation_of_Speech_Quality


Directional microphones
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https://www.shure.eu/musicians/discover/educational/polar-patterns


Microphone array 
beamforming
E.g., endfire arrays

Wide variety of adaptive beamforming and 
dynamic Wiener filtering (DWF) techniques
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https://www.vocal.com/beamforming-2/endfire-microphone-array-beamforming-with-small-beamwidth/


De-noising with signal processing

Spectral subtraction

Nonnegative matrix factorization

Adaptive noise reduction

Time-frequency masking
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Speech enhancement with neural networks

Adaptive filtering/beamforming
Network estimates spectral or other characteristics of signal

Time-frequency mask (or gain) estimation
Network estimates gain to apply per time-frequency cell

Auto-encoder
Network models degraded-to-clean transformation
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Real-time (causal) speech enhancement / 
denoising

Inputs: 
Frames of audio, 42 features per frame
22 band energy values
20 other features

Outputs:
Ideal (Wiener) gains for each of the 22 bands per 
frame
VAD estimate for the frame (auxiliary, just helps 
training)

A real example: RNNoise

J.-M. Valin, A Hybrid DSP/Deep Learning Approach to Real-Time Full-Band Speech Enhancement, International Workshop on Multimedia Signal Processing, 2018

https://jmvalin.ca/demo/rnnoise/
https://jmvalin.ca/papers/rnnoise_mmsp2018.pdf


Where we are now

Machine learning (especially deep learning) has completely overrun 
speech processing research

Promises of deep learning:
Solves unsolvable problems

Finds unintuitive solutions

Removes the need for detailed expertise and handcrafting

Pitfalls of deep learning:
Behavior difficult to explain/predict

Too easy to apply (and misapply)

Blind spots / false confidence / catastrophic failures



Thank you!

56


